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Motivation me!‘
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* Why to study the superfluid transition in the presence of a heat
current (Q)?

 Superconductor carrying an electric current, but with critical fluctuations.

e Heat current truncates divergence of the correlation length &
* Physical properties become non-linear and Q-dependent

e Model system to study non-equilibrium phase transitions and critical
phenomena

e Verify theoretical predictions based on Renormalization-Group calculation

e Why the thermal expansion coefficient?

 To search for the enhancement by a heat current
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Theoretical Prediction
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Apparatus: Low-gravity Simulator JPL
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Thermal Conductivity Cell & Pressure Regulation "'pml"‘
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Straty-Adams
Pressure Gauge

Pressure regulation:
Pressure Gauge + Hot Volume + LT Valve
LT Valve Resolution: fraction of ubar (rms)

K. H. Mueller, G. Ahlers, and F. Pobell (1976)

Hot Volume
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cell
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Cell Characteristics

w1 v Sidewall: 0.004” Stainless Steel
v' Endcaps: OFHC copper

v' Thermometers: He-4 melting curve
thermometers (MCT)

v Dimensions: 0.5cm did., 0.5¢cm tall

T v Epoxy seal
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Hot Volume Technique JPL
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< From mass conservation (M = My, + M)

] Hotvolume
ﬁ — lim . (AT-V-p)py LTvalve X | | (HV)

« |n a ramping experiment:

ﬁP,cell °c ﬂP,HV (aTHV /aTcell)

\ Slope of the temperature plot of Ty vs. Ty

(AT-V-p)

cell

Cell

® To improve sensitivity, Ty is chosen so that 3,y is close to 0.
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Raw Ramping Data me!‘
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Cell Pressure = 1 bar
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Cell Temperature: T-T_(Q) (LK)

(Measured by the cell top thermometer)
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Time Series Data prvotoeifi
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Heat Current: 10 mW/cm2 Dissipation sets in @ the cell bottom boundary
Ramp Rate: 3.17 nK/sec T (Q)
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Data Analysis - Calculation
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t0 = [T, (0) - T]/ T,(0)

AB,(T,Q)=-1"f(Q/Q,)

When Q<<Qc, f(Q/Q,)=(A/600)(Q/Q.)’

A=69 from Harter et al (experiment, A=6.25 from HD,

9.2 from GCH)
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Data Analysis - Comparison mel:
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Find Ty where [By;,=0 st
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From Measured 3, of K. H. Mueller, G. Ahlers, and F. Pobell,
By can also be determined.
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Discussions JPL
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® We have performed experimental search for the
enhancement of the thermal expansion coefficient by
a heat current

® We have considered the rounding effect due to the

variations in the local reduced temperature: t (z,Q)
— T, variation due to gravity
—T(t,z,Q) due to mutual friction
— AT(t,Q), offset from T_top due to Kapitza resistance

The last two factors lead to a larger temperature variation in the
sample cell, therefore a larger rounding effect, for larger Q,

® Future work:

® Measurements in reduced gravity

® Increase the volume ratio (cell volume vs hot volume)
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The superfluid transition in “He in the presence of a heat current
(Q) provides an ideal system for the study of phase transitions
under non-equilibrium, dynamical conditions. Many physical
properties become nonlinear and Q-dependent near the transition
temperature, T,. For instance, the heat capacity enhancement by a
heat current was predicted theoretically!, and observed
experimentally?. Because the thermal expansion coefficient is a
linear function of the specific heat near T,, both exhibit similar
critical behaviors under equilibrium conditions. An enhancement of
the thermal expansion coefficient is also expected if a similar
relationship exists under non-equilibrium conditions. We report our
experimental search of the enhancement of the thermal expansion of
superfluid “He by a heat current (0<Q<100 uW/cm?). We conducted the
measurements in a thermal conductivity cell at sample pressures of
SVP and 21.2 bar. The measurements were also performed in a reduced
gravity environment of 0.0l1lg provided by the low-gravity simulator
we have developed at JPL.
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